
VKRA: 2-Wege-Regelkugelhahn mit Aussengewinde, PN 40

Ihr Vorteil für mehr Energieeffizienz

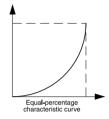
Präzises Regeln und Arbeiten mit geringer Leckage, das ist Effizienz

Eigenschaften

- 2-Wege-Regelkugelhahn für stetige Regelung von Kalt- und Warmwasser in geschlossenen Kreisläufen
- Zusammen mit den Ventilantrieben AKM 105(S), 115(S), 115SA und AKF 112, 113(S) als Stellgerät
- Kugelhahnkennlinie gleichprozentig; Regelkontur in der Kugel direkt integriert
- Kennlinie einstellbar mit SUT-Drehantrieb (SAUTER Universal Technologie) auf linear oder quadratisch
- · Spindel mit grosser Gleitfläche und PTFE-Gleitring
- Niedriges Drehmoment mittels O-Ring-gelagerter Manschette
- Kugelhahn mit Aussengewinde nach ISO 228-1 (G x" B)
- · Körper aus Dezincification Resistant (DZR) Messingguss
- · Spindel aus DZR-Messing mit PTFE-Gleitring
- · Kugel aus DZR-Messing, verchromt und polierter Oberfläche
- · Achsenabdichtung mit doppeltem O-Ring aus EPDM
- Schmutzfänger und Verschraubung als Zubehör erhältlich
- · Wasserbeschaffenheit nach VDI 2035

Technische Daten

Kenngrössen		
	Nenndruck	40 bar
	Ventilkennlinie	Gleichprozentig
	Stellverhältnis Kugelhahn	500:1
	Stellverhältnis mit Antrieb	> 50:1
	Leckrate	Wasserdicht nach EN 60534-4 L/1, besser Klasse 5
	Drehwinkel	90°
Umgebungsbedingungen		
	Betriebstemperatur ¹⁾	-10130 °C ohne Kondensation
	Betriebsdruck	Flüssigkeit: 40 bar (-1050 °C), 35 bar Gase: 20 bar
Normen, Richtlinien		
	Druck- und Temperaturangaben	EN 764, EN 1333
	Strömungstechnische Kenngrösse	EN 60534 (Seite 3)
Typenübersicht		


Typenübersicht						
Тур	Nennweite	Anschluss ISO 228-1	K _{vs} -Wert	Gewicht		
VKRA015F350	DN 15	G 1" B	1 m³/h	360 g		
VKRA015F340	DN 15	G 1" B	1,6 m³/h	360 g		
VKRA015F330	DN 15	G 1" B	2,5 m³/h	360 g		
VKRA015F320	DN 15	G 1" B	4 m³/h	360 g		
VKRA015F310	DN 15	G 1" B	6,3 m³/h	360 g		
VKRA020F320	DN 20	G 11/4" B	4 m³/h	440 g		
VKRA020F310	DN 20	G 11/4" B	6,3 m³/h	440 g		
VKRA020F300	DN 20	G 11/4" B	10 m³/h	440 g		
VKRA025F320	DN 25	G 1½" B	6,3 m³/h	570 g		
VKRA025F310	DN 25	G 1½" B	10 m³/h	570 g		
VKRA025F300	DN 25	G 1½" B	16 m³/h	570 g		
VKRA032F320	DN 32	G 2" B	10 m³/h	840 g		
VKRA032F310	DN 32	G 2" B	16 m³/h	840 g		
				ŭ		

¹⁾ Bei Betriebstemperaturen unter < 5°C und > 100°C muss das entsprechende Zubehör verwendet werden.

VKRA0**F300

 \bowtie

Тур	Nennweite	Anschluss ISO 228-1	K _{vs} -Wert	Gewicht
VKRA032F300	DN 32	G 2" B	25 m³/h	840 g
VKRA040F320	DN 40	G 21/4" B	16 m³/h	1290 g
VKRA040F310	DN 40	G 21/4" B	25 m³/h	1290 g
VKRA040F300	DN 40	G 21/4" B	40 m³/h	1290 g
VKRA050F320	DN 50	G 2¾" B	25 m³/h	1980 g
VKRA050F310	DN 50	G 2¾" B	40 m³/h	1980 g
VKRA050F300	DN 50	G 2¾" B	63 m³/h	1980 g

Zubehör	
Тур	Beschreibung
0510240001	Montagekit für Kugelhähne VK**/BK** als Ersatzteil und als Zubehör für Drehantriebe ASF 112, 113 ab Index B
0510240011	Zwischenstück erforderlich bei Mediumstemperatur < 5 °C
0510420001	Zwischenstück erforderlich bei Mediumstemperatur > 100 °C
0361951015	Verschraubung für Aussengewinde mit Flachdichtung, G1 - Rp½
0361951020	Verschraubung für Aussengewinde mit Flachdichtung, G1¼ - Rp¾
0361951025	Verschraubung für Aussengewinde mit Flachdichtung, G1½ - Rp1
0361951032	Verschraubung für Aussengewinde mit Flachdichtung DN 32
0361951040	Verschraubung für Aussengewinde mit Flachdichtung DN 40
0361951050	Verschraubung für Aussengewinde mit Flachdichtung DN 50
0560332015	Schmutzfänger aus Rotguss (Bronze), -10150 °C, Maschenweite 0,5 mm, DN 15
0560332020	Schmutzfänger aus Rotguss (Bronze), -10150 °C, Maschenweite 0,8 mm, DN 20
0560332025	Schmutzfänger aus Rotguss (Bronze), -10150 °C, Maschenweite 0,8 mm, DN 25
0560332032	Schmutzfänger aus Rotguss (Bronze), -10150 °C, Maschenweite 0,8 mm, DN 32
0560332040	Schmutzfänger aus Rotguss (Bronze), -10150 °C, Maschenweite 0,8 mm, DN 40
0560332050	Schmutzfänger aus Rotguss (Bronze), -10150 °C, Maschenweite 0,8 mm, DN 50

Kombination VKRA mit elektrischen Antrieben

- i Garantieleistung: Die angegebenen technischen Daten und Druckdifferenzen sind nur in Kombination mit SAUTER Ventilantrieben zutreffend. Mit der Verwendung von Ventilantrieben sonstiger Hersteller erlischt jegliche Garantieleistung.
- i Definition für ∆p s: Max. zul. Druckabfall im Störungsfall (Rohrbruch nach Kugelhahn), bei der der Antrieb den Kugelhahn mit Hilfe der Rückstellfeder sicher schliesst.
- j Definition für ∆p max: Max. zul. Druckabfall im Regelbetrieb, bei der der Antrieb den Kugelhahn sicher öffnet und schliesst.

Druckdifferenzen

Antrieb	AKM105F100 AKM105F120	AKM105F122	AKM115F120	AKM115F122	
Drehmoment	4 Nm	4 Nm	8 Nm	8 Nm	
Steuersignal	2-/3-Pt.	2-/3-Pt.	2-/3-Pt.	2-/3-Pt.	
Laufzeit	30/120 s	30/120 s	120 s	120 s	
Betriebsspan- nung	230 VAC	24 VAC	230 VAC	24 VAC	
Gegen den Druck schliessend	∆p _{max} [bar]	∆p _{max} [bar]	∆p _{max} [bar]	Δp _{max} [bar]	
VKRA015F350 VKRA015F340 VKRA015F330 VKRA015F320 VKRA015F310 VKRA020F320 VKRA020F310 VKRA020F300 VKRA025F320 VKRA025F310 VKRA025F310	1,8	1,8	3,5	3,5	

Antrieb	AKM105F100 AKM105F120	AKM105F122	AKM115F120	AKM115F122		
VKRA032F320						
VKRA032F310						
VKRA032F300						
VKRA040F320						
VKRA040F310	1,2	1,2	2,4	2,4		
VKRA040F300						
VKRA050F320						
VKRA050F310						
VKRA050F300						
Mit dem Druck sch	Mit dem Druck schliessend nicht anwendbar					

Antrieb	AKM105SF132	AKM115SF132	AKM115SAF232	AKM115SF152
Drehmoment	4 Nm	8 Nm	8 Nm	7 Nm
Steuersignal	2-/3-Pt., 010 V	2-/3-Pt., 010 V	010V, BACnet MS/TP	2-/3-Pt., 010 V, 4 20 mA
Laufzeit	35/60/120 s	35/60/120 s	35/60/120 s	6 s
Betriebsspan- nung	24 VAC/DC	24 VAC/DC	24 VAC/DC	24 VAC/DC
Gegen den Druck schliessend	Δp _{max} [bar]	Δp _{max} [bar]	Δp _{max} [bar]	Δp _{max} [bar]
VKRA015F350 VKRA015F340 VKRA015F330 VKRA015F320 VKRA015F310 VKRA020F320 VKRA020F310 VKRA020F300 VKRA025F320 VKRA025F320 VKRA025F310 VKRA025F300	1,8	3,5	3,5	3,5
VKRA032F320 VKRA032F310 VKRA032F300 VKRA040F320 VKRA040F310 VKRA040F300 VKRA050F320 VKRA050F310 VKRA050F300	1,2	2,4	2,4	2,4

Antrieb	AKF112F12	20	AKF112F12	22	AKF113F12	22	AKF113SF	122
Drehmoment	7 Nm		7 Nm		7 Nm		7 Nm	
Steuersignal	2-Pt.		2-Pt.		3-Pt.		010 V	
Laufzeit	90 s		90 s		90 s		90 s	
Betriebsspan- nung	230 VAC		24 VAC/DC		24 VAC/DC		24 VAC/DC	
Gegen den Druck schliessend	Δp _{max} [bar]	∆p _s [bar]						
VKRA015F350 VKRA015F340 VKRA015F330 VKRA015F320 VKRA015F310 VKRA020F320 VKRA020F310 VKRA020F300 VKRA025F320 VKRA025F320 VKRA025F310 VKRA025F310	3,5	5,4	3,5	5,4	3,5	5,4	3,5	5,4

Mit dem Druck schliessend nicht anwendbar

Antrieb	AKF112F12	20	AKF112F12	22	AKF113F12	22	AKF113SF	122
VKRA032F320								
VKRA032F310								
VKRA032F300								
VKRA040F320								
VKRA040F310	2,4	3,5	2,4	3,5	2,4	3,5	2,4	3,5
VKRA040F300								
VKRA050F320								
VKRA050F310								
VKRA050F300								

Mit dem Druck schliessend nicht anwendbar

Funktionsbeschreibung

Der 2-Wege-Regelkugelhahn kann mit einem elektrischen Antrieb in jede beliebige Zwischenstellung gesteuert werden. Der Schliessvorgang gegen den Betriebsdruck ist mit den Antrieben AKM 105, 115(S) und 115SA sowie den Ventilantrieben mit Federrückzug AKF 112 und 113(S) möglich. Der Schliessvorgang mit dem Betriebsdruck ist nicht zugelassen.

Schliessvorgang gegen den Druck

Diese Regelkugelhähne zeichnen sich durch hohe Zuverlässigkeit und Präzision aus und leisten einen wichtigen Beitrag zur umweltfreundlichen Regelung. Sie erfüllen anspruchsvolle Anforderungen wie Schnellschliessfunktion, Differenzdrücke bewältigen, Mediumstemperatur regeln, Absperrfunktion erfüllen und dies alles in geräuscharmer Form.

Die Spindel des Kugelhahns wird mit dem Achsmitnehmer des Antriebs automatisch verbunden. Die aus Messing bestehende Kugel regelt einen gleichprozentigen Durchfluss im Regelast. Die Dichtheit der Kugel wird durch im Körper eingelegte PTFE-Manschetten gewährleistet. Hinter diese beiden Manschetten ist ein EPDM O-Ring eingelegt. Diese O-Ringe erlauben der Kugel und beider Manschetten eine kleine axiale Bewegung, was eine hohe Dichtheit und kleine Drehmomente ermöglicht.

Die Dichtheit der Spindel wird durch 2 O-Ringe gewährleistet. Diese können nicht ersetzt werden.

Bestimmungsgemässe Verwendung

Die Verwendung dieses Produkts ist ausschliesslich in HLK-Gebäudeanlagen für Steuer- und Regelzwecke erlaubt. Andere Verwendungen benötigen vorab die Zustimmung des Herstellers.

Zu beachten ist der Abschnitt «Funktionsbeschreibung» sowie alle Produktvorschriften in diesem Datenblatt.

Änderungen oder Umbauten des Produkts sind nicht zulässig.

Nicht bestimmungsgemässe Verwendung

Der Regelkugelhahn VKRA hat keine Trinkwasserzulassung. Das Produkt ist nicht für die Verwendung in Ex-Zonen geeignet.

Hinweis gemäss California Proposition 65

Das Produkt enthält Blei. Zum Inverkehrbringen in Nordamerika müssen die entsprechenden Warnhinweise auf dem Produkt bzw. auf der Verpackung angebracht werden.

Projektierungs- und Montagehinweise

Die Kugelhähne werden mit Drehantrieben mit oder ohne Federrückzug kombiniert. Der Antrieb wird direkt auf den Kugelhahn aufgesteckt und mit einem Bajonettverschluss gehalten. Die Verbindung der Antriebsachse mit der Spindel erfolgt automatisch, dazu soll die Achse des Kugelhahns in einer Zwischenposition stehen. Bei der ersten Inbetriebnahme der Anlage fährt der SUT-Antrieb auf Stellung offen und die beiden Geräte werden automatisch verbunden. Der Drehwinkel des Kugelhahns wird ebenfalls vom Antrieb detektiert und es sind keine weiteren Einstellungen nötig. Mit den SUT-Antrieben kann die Kennlinie beliebig auf linear oder quadratisch umgestellt werden. Um ein Blockieren des Kugelhahns in den Endstellungen zu vermeiden, wird der SUT-Antrieb eine

Bewegung von ca. 30° Drehwinkel vornehmen, wenn sich das Stellsignal innerhalb 3 Tagen in den Endstellungen nicht geändert hat.

Damit Verunreinigungen im Wasser (z. B. Schweissperlen, Rostpartikel usw.) zurückgehalten werden und die PTFE-Manschette nicht beschädigt wird, ist der Einbau von Schmutzfängern z. B. pro Stockwerk oder Strang erforderlich. Schmutzfilter siehe Zubehör, je nach Typ auf Einsatz und Temperaturbereich achten. Anforderungen an die Wasserbeschaffenheit entsprechend VDI 2035.

Alle Kugelhähne dürfen nur in geschlossenen Kreisläufen eingesetzt werden. Bei offenen Kreisläufen kann eine zu hohe Sauerstoffmischung die Kugelhähne zerstören. Um dies zu vermeiden, ist ein Sauerstoffbindemittel zu verwenden; dabei ist bezüglich Korrosion die Kompatibilität mit dem Hersteller der Lösung abzuklären. Dazu kann die weiter unten aufgeführte Materialliste verwendet werden.

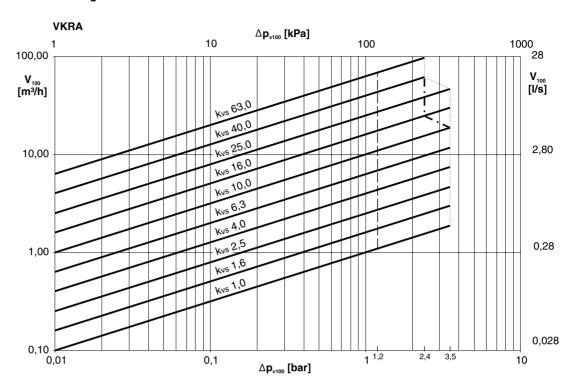
In den Anlagen werden meistens die Armaturen isoliert. Dabei ist jedoch zu beachten, dass der Flansch zur Aufnahme des Antriebs nicht isoliert wird.

Damit in ruhigen Räumen kein störendes Strömungsgeräusch hörbar wird, darf die Druckdifferenz über dem Kugelhahn 50% der angegebenen Werte nicht überschreiten.

Die Handkurbel ist auf dem Antrieb fest montiert. Zur Betätigung dieser Handkurbel muss der Handverstellungsknopf am Antrieb nach unten geschoben werden. Der Antrieb bleibt betriebslos solange dieser Knopf nicht wieder in die obere Stellung geschoben wird. An der Handkurbel ist auch ein 4-Kant vorhanden, passend zum Vierkant der Spindel des Kugelhahns.

Zusätzliche technische Daten

Druck- und Temperaturangaben	EN 764, EN 1333
Strömungstechnische Kenngrössen	EN 60534, Seite 3
Technisches Handbuch "Stellgeräte"	7000477001
Kenngrössen, Installationshinweise, Regelung, Allgemeines	Gültige EN-, DIN- und AD-Normen, TRD-Regeln und UVV-Vorschriften
CE-Konformität: DGRL 2014/68/EU	Fluidgruppe II, kein CE-Kennzeichen gemäss DGRL, Art. 4.3
UKCA-Konformität: Pressure Equipment (Safety) Regulations 2016	Fluidgruppe II, kein UKCA-Kennzeichen gemäss PE(S)R, Art. 8(3)


Anwendung mit Wasser

Bei Verwendung von Wasser, gemischt mit Glykol oder Inhibitor, soll zur Sicherheit die Kompatibilität der im Kugelhahn vorhandenen Materialien und Dichtungen mit dem Hersteller abgeklärt werden. Dazu kann die in der Material- und Umweltdeklaration MD 56.092 aufgeführte Materialliste verwendet werden. Wir empfehlen, dass bei Verwendung von Glykol die Konzentration zwischen 20% und 50% auszuwählen ist.

Montagelage

Das Stellgerät kann in beliebiger Lage montiert werden, jedoch wird die hängende Montagelage nicht empfohlen. Eindringendes Kondensat, Tropfwasser usw. in den Antrieb ist zu verhindern.

Durchflussdiagramm

 $\Delta p_V = 1.2 \text{ bar}$

de Luft, Niederdruckdampf

fr Air, vapeur basse pression

en Air, low pressure steam

it Aria, vapore a bassa pressione es Aire, vapor baja presión

sv Luft, Lågtrycksånga

nl Lucht, lage druk stoom

 $\Delta p_V = 3.5 \text{ bar}$

de Wasser, Wasser-Glycol

fr Eau, eau-glycol en Water, water-glycol

it Acqua, acqua-glicole

es Agua, agua-glicol sv Vatten, Vatten-Glykol nl Water, water-glycol $\Delta p_V = 2.4 \text{ bar}$

VKRA / BKRA 032F300 k_{VS}25 VKRA / BKRA 032F310 k_{VS}16 VKRA / BKRA 040F310 k_{VS}25

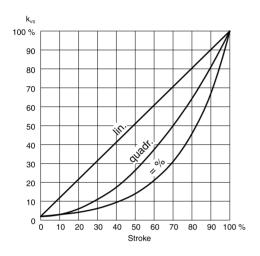
Zusätzliche Angabe zur Ausführung

Körper des Kugelhahns ist aus DZR-Pressmessing (EN 12165) mit Aussengewinde nach ISO 228-1. Spindeldichtung mit doppeltem O-Ring aus Ethylen-Propylen.

Werkstoffnummern nach DIN

Komponente	DIN-Werkstoff-Nr.	DIN-Bezeichnung
Körper des Kugelhahns	CW602N	CuZn36Pb2As
Anschlussstutzen	CW602N	CuZn36Pb2As
Kugel, poliert, verchromt	CW602N	CuZn36Pb2As
Achse	CW602N	CuZn36Pb2As
O-Ring	EPDM	
Manschette	PTFF	

Definitionen der Druckdifferenzen

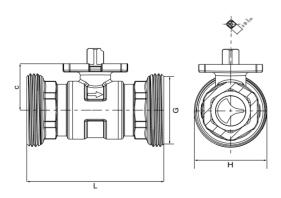

Δ**p_v:** Maximal zulässige Druckdifferenz über dem Ventil bei jeder Hubstellung, begrenzt durch Geräuschpegel und Erosion. Mit dieser Kenngrösse wird das Ventil als durchströmtes Element spezifisch in seinem hydraulischen Verhalten charakterisiert. Durch die Überwachung der Kavitation und Erosion und der damit verbundenen Geräuschbildung wird sowohl die Lebensdauer als auch die Einsatzfähigkeit verbessert.

Δ**p**_{max}: Maximal zulässige Druckdifferenz über dem Ventil, bei der der Antrieb das Ventil sicher öffnen und schliessen kann. Berücksichtigt sind: Statischer Druck und strömungstechnische Einflüsse. Mit diesem Wert ist ein störungsfreier Hubdurchgang und Dichtheit gewährleistet. Dabei wird in keinem Fall der Wert Δp_V des Ventils überschritten.

Δ**p_s:** Maximal zulässige Druckdifferenz über dem Ventil im Störungsfall (z. B. Spannungsausfall, Temperaturund Drucküberhöhung sowie Rohrbruch) bei der der Antrieb das Ventil dicht schliessen und ggf. den ganzen Betriebsdruck gegen den Atmosphärendruck halten kann. Da es sich hier um eine Sicherheitsfunktion mit schnellem Hubdurchgang handelt, kann Δp_s grösser als Δp_{max} bzw. Δp_v sein. Die hier entstehenden strömungstechnischen Störeinwirkungen werden schnell durchfahren. Sie sind bei dieser Funktionsweise von untergeordneter Bedeutung. Bei den 3-Wege-Ventilen gelten die Werte nur für den Regelast.

Δ**p**stat: Leitungsdruck hinter dem Ventil. Entspricht im Wesentlichen dem Ruhedruck bei abgeschalteter Pumpe, z. B. hervorgerufen durch Flüssigkeitshöhe der Anlage, Druckzunahme durch Druckspeicher oder Dampfdruck. Bei Ventilen, die mit dem Druck schliessen, ist dafür der statische Druck, addiert mit dem Pumpendruck, einzusetzen.

Kennlinie Regelast bei Antrieben mit Stellungsregler

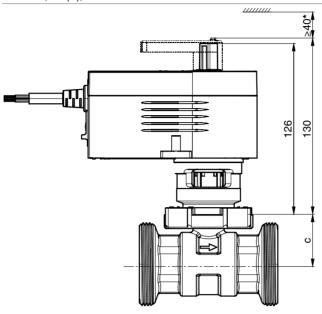

An den Antrieben AKM 115S, 115SA

——— Regelast: gleichprozentig, linear, quadratisch

Entsorgung

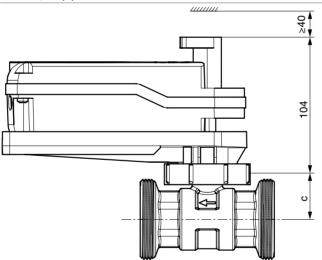
Bei einer Entsorgung ist die örtliche und aktuell gültige Gesetzgebung zu beachten. Weitere Hinweise zu Material und Werkstoffen entnehmen Sie bitte der Material- und Umweltdeklaration zu diesem Produkt.

Massbild



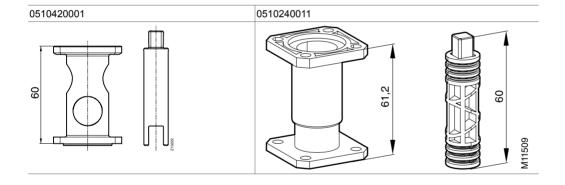
DN	c (mm)	G (inch)	L (mm)	H (mm)
15	27,6	G 1" B	87	33,25
20	27,6	G 1¼" B	89,4	41,9
25	30,5	G 1½" B	90	47,8
32	34,3	G 2"B	100	59,6
40	39,8	G 21/4" B	116,2	65,6
50	52,8	G 2¾" B	124,8	81,4

Kombinationen


- i Alle Masse in Millimeter.
- i Abmessung c, siehe Tabelle oben.

AKM 105, 115(S), 115SA²⁾

*) mit Hilfsschaltereinheit 0510480001 oder 0510480002: ≥ 72 mm


²⁾ Baulänge des AKM 115SA beachten (siehe PDS 53.100)

Zubehör

05603320**		DN	b (mm)	c (mm)	G (inch) ISO 228-1	L (mm)	H (mm)
		15	12	38	G ½	54	27
		20	15	43	G ¾	67	34
		25	16	53	G 1	79	41
		32	17	64	G 1¼	98	51
		40	18	70	G 1½	106	57
b b	G H	50	20	85	G 2	122	69

03619510**	DN	G1 (inch) (ISO 228-1)	G2 (inch) (ISO 228-1)
	15	Rp ½	G 1
	20	Rp ¾	G 11⁄4
81 1 1 5	25	Rp 1	G 1½
	32	Rp 11/4	G 2
<u> </u>	40	Rp 1½	G 21/4
	50	Rp 2	G 2¾

Alle Masse in Millimeter.

